# Field test of a new instrument to measure UV/Vis (300-700 nm) ambient aerosol extinction spectra in Colorado during DISCOVER-AQ

C. Jordan<sup>1</sup>, B. Anderson<sup>2</sup>, A. Beyersdorf<sup>2</sup>, J. Dibb<sup>1</sup>, M. Greenslade<sup>1</sup>, R. Martin<sup>2</sup>, E. Scheuer<sup>1</sup>, M. Shook<sup>2</sup>, L. Thornhill<sup>2</sup>, D. Troop<sup>3</sup>, E. Winstead<sup>2</sup>, and L. Ziemba<sup>2</sup>

<sup>1</sup>Institute for the Study of Earth, Oceans, & Space, University of New Hampshire, Durham, NH; <sup>2</sup>NASA Langley Research Center, Hampton, VA;

<sup>3</sup>Southwest Research Institute, Durham, NH

AGU Fall Meeting, San Francisco, 15 Dec. 2014

### Spectral Aerosol Extinction (SpEx) instrument



$$Extinction = -\frac{\ln\left(\frac{I}{I_0}\right)}{L}$$





Typical operating parameters:

- •optical path length 39.4 m
- •internal volume ~17 l
- •flow rate ~80 lpm
- •flush time 90 s
- •integration time ~20-50 ms
- •sample time 30 s

### **Gas-phase Laboratory Tests**



8000 6000 6000 2000 2000 440 460 480 500 520 540 Wavelength (nm)

- •No evidence of O<sub>3</sub> production nor NO<sub>2</sub> loss in light beam of optical cell with 80 lpm flow
- •No loss of NO<sub>2</sub> through the filter in the reference inlet line

SPEX MEASURED

NO<sub>2</sub> SPECTRUM

AGREES WELL WITH THEORY

### SpEx PSL Spectra & Mie Theory



SPEX MEASURED
AEROSOL SPECTRA
AGREE WELL WITH
MIE THEORY



### **Normalized Mean Spectra**



Normalized Extinction 1.0 0.8 0.6 0.4 PSL 600nm 0.2 AS 600nm itric Acid 600nm 0.0 300 400 500 600 700 Wavelength (nm)

- Peak extinction decreases with particle size
- •Spectral shape depends on particle composition, as well as, size

### Normalized Mean Spectra: PM1 Dust





- •PM1 Dust Spectra show little wavelength dependence
- Pigments influence spectral shape

### Normalized Mean Spectra: scaled to 700 nm



- Uncoated soot compared to:
- BC surrogates:
  - Fullerene soot
  - Aquadag
- BrC surrogate:
  - Cinnamaldehyde
- •UV extinction of uncoated soot found in range between BC & BrC
- Little variability among soot &
   BC samples from 500-700 nm

# DISCOVER-AQ Colorado (& Idaho) Sample Sites



# Normalized Mean Spectra: scaled to 700 nm Laboratory & Preliminary DISCOVER-AQ: Colorado



# Normalized Mean Spectra: scaled to 700 nm Laboratory & Preliminary DISCOVER-AQ: Colorado



### **Concluding Remarks**

#### **SPEX**

- •in situ ambient aerosol extinction spectra, 300 700 nm
- •expands *in situ* measurement capability beyond 3 wavelengths available from other methods
- obtains good agreement with theory
- provides unique data into UV range
- •spectra contain information about aerosol size distributions & composition

#### **NEW TOOL FOR**

ambient aerosol extinction characterization study of extinction evolution in the atmosphere contributing to closure studies future calibration/validation for remote sensors

#### **ACKNOWLEDGMENTS**

Thanks to Kevin Kaye, Tom Wisniewski, John Hair, John Prohaska, Brian Heikes, Matt Brown, & James Hite for helpful discussions; to John Daniel for his encouragement and support of this work, funded by NOAA grant NA10OAR4590134; and to Jim Crawford for additional support funded by NASA's DISCOVER-AQ program.

### **Additional Slides**

### The Value of a Spectral Extinction Measurement

- Aerosol interaction with light is wavelength dependent
  - -often characterized by a power law:  $p(\lambda) = \lambda^{-\alpha}$ where,  $\alpha$  is known as Angstrom exponent
  - -p can be any optical property that is described by a power law, e.g., scattering, absorption, extinction, etc.
- •Commercially available instruments often target a few  $\lambda s$ , such that Angstrom exponents are calculated from these few wavelengths, e.g.,

$$\alpha(\lambda_1, \lambda_2) = -\frac{\ln(p(\lambda_1)/p(\lambda_2))}{\ln(\lambda_1/\lambda_2)}$$

- Additional wavelength-dependent parameters include

-refractive indices, 
$$m(\lambda) = n(\lambda) + k(\lambda)$$

-single scatter albedo,  $\omega(\lambda) = \beta(\lambda) / \gamma(\lambda)$ 

$$\omega(\lambda) = \beta(\lambda) / \gamma(\lambda)$$
  
= \beta(\lambda) / (\beta(\lambda) + \alpha(\lambda))





